
CENG3430 Rapid Prototyping of Digital Systems

Lecture 08:

Rapid Prototyping (II) –

Embedded Operating System

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Prototyping Styles with Zynq ZedBoard

CENG3430 Lec07: Integration of ARM and FPGA 2021-22 T2 2

Xilinx

Vivado

(HDL)

hardware

Program

Logic

(PL)

Process

System

(PS)

software

Programmable

Logic Design

Style 1)

FPGA (PL)

VHDL or Verilog

Programming

Hardware Base

System

Board Support

Package

Bare-metal

Applications

Xilinx

SDK

(C/C++)

Style 2)

ARM + FPGA

ARM Programming

& IP Block Design

Hardware Base

System

Board Support

Package

Operating

System

Applications
SDK

(Shell, C,

Java, …)

Style 3)

Embedded OS

Shell Script

Programming

Outline

• Embedded Operating System

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux Device Driver

• Lab 08: Software Stopwatch with Zynq-Linux

– Shell Script

– GPIO on Zynq

– Example Scripts

CENG3430 Lec08: Embedded Operating System 2021-22 T2 3

Why Embedded Operating Systems

• An embedded OS is not necessary for all digital

systems, but it has the following advantages:

– Reducing Time to Market

• OS vendors provide support for various architectures and platforms.

– Make Use of Existing Validated Features

• Graphical interface-level support deals with the high-level

graphical content that is to be displayed.

• Driver-level support provides the low-level drivers that

makes the connection between the processor and the device.

– Reduce Maintenance and Development Costs

• By making use of an embedded OS, the amount of custom code

that needs to be developed and tested can be reduced.

CENG3430 Lec08: Embedded Operating System 2021-22 T2 4

Zynq Operating Systems

• There’re many Zynq-compatible embedded OSs:

– Xilinx Zynq-Linux: An open-source OS based on the Linux

kernel 3.0 with additions such as BSP and device drivers.

– Petalogix® - Petalinux: It provides a complete package to

build, test, develop and deploy embedded Linux systems.

– Xillybus – Xillinux: A desktop distribution of Linux that can

run a full graphical desktop environment on the Zedboard.

• A keyboard and mouse can be attached via the USB On-The-Go

port, while a monitor can be connected to the provided VGA port.

– FreeRTOS: a lightweight real-time OS that is available for a

wide range of devices and processor architectures.

– Further Operating Systems: There are a large number of

OSs for Zynq which are provided by Xilinx partners:

• E.g., Adeneo Embedded Windows CE 7.0, Linux, Android and QNX.

CENG3430 Lec08: Embedded Operating System 2021-22 T2 5

Outline

• Embedded Operating System

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux Device Driver

• Lab 08: Software Stopwatch with Zynq-Linux

– Shell Script

– GPIO on Zynq

– Example Scripts

CENG3430 Lec08: Embedded Operating System 2021-22 T2 6

Linux System Overview

• Below shows a generalized GNU/Linux System:

CENG3430 Lec08: Embedded Operating System 2021-22 T2 7

SCI facilitates function

calls from the user space

to the kernel of system.

Hardware devices are

abstracted from the user-

level by the kernel space.

Applications run on top of

the kernel in user-space.

Kernel provides a set of

tools with which the user

can interact with hardware.

Platform-specific code:

board support package.

Linux Kernel

• Linux kernel is of

subsystems providing

required services:

 Memory Management

 Process Management

 Virtual File System

 Device Drivers

• A system call provides

interaction between

user applications and

kernel services.

– Where direct calls are

NOT possible.
CENG3430 Lec08: Embedded Operating System 2021-22 T2 8

Linux Device Driver

• Linux device driver provides an abstraction

between hardware devices and running applications.

– A standardized set of calls can be implemented across all

programs which are independent of the specific device.

Example: Included Device Drivers for Zynq-Linux

CENG3430 Lec08: Embedded Operating System 2021-22 T2 9

The Zynq Book (English)

Outline

• Embedded Operating System

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux Device Driver

• Lab 08: Software Stopwatch with Zynq-Linux

– Shell Script

– GPIO on Zynq

– Example Scripts

CENG3430 Lec08: Embedded Operating System 2021-22 T2 10

Software Stopwatch with Zynq-Linux

• In Lab 08, we will implement a software stopwatch in

Zynq-Linux by using the shell script.

– It interacts with PL peripherals via GPIO (device driver).

CENG3430 Lec08: Embedded Operating System 2021-22 T2 11

Dash Shell Script (#/bin/sh)

• A shell script is a list of commands that can run by

the Unix shell directly in a sequential manner.

– Unix shell is a command line (or terminal) interpreter.

• Common commands of a shell script:

– Comment: # comment

– Arguments: $0, $1, $2, ...

– Variable: $var

– Command Execution: $(command) or `command`

– Expression: $((expression))

– Loop: for i in $(seq 1 n) do ... done;

– Function Call: function_name parameters;

– Read from File: cat file_path;

– Write to File: echo $value > file_path;
CENG3430 Lec08: Embedded Operating System 2021-22 T2 12

CENG3430 Lec08: Embedded Operating System 2021-22 T2 13

• General-purpose input/output (GPIO):

– Uncommitted digital signal pins on an integrated circuit or

board whose behavior—including whether it acts as input

or output—is controllable by the user at run time.

General-Purpose Input/Output (GPIO)

• There are total 118 GPIO

pins on Zynq.

– 54 Multiplexed I/O (MIO):

Connections to PS peripherals

• GPIO IDs: from 0 to 53

– 64 Extended MIO (EMIO):

Connections to PL peripherals

• GPIO IDs: from 54 to 117

Hardware System Architecture of Zynq

CENG3430 Lec08: Embedded Operating System 2021-22 T2 14

Embedded Linux Hands-on Tutorial

-- ZedBoard

CENG3430 Lec08: Embedded Operating System 2021-22 T2 15

• Zynq-Linux defines 60 GPIO-EMIO signals to control

the PL peripherals in system.ucf:

– USB OTG Reset: processing_system7_0_GPIO<0>

– OLED: processing_system7_0_GPIO<1>~<6>

– LED: processing_system7_0_GPIO<7>~<14>

– Switches: processing_system7_0_GPIO<15>~<22>

– Buttons: processing_system7_0_GPIO<23>~<27>

– Pmod (JA~JD): processing_system7_0_GPIO<28>~<59>

– Note: The actual GPIO IDs for EMIO pins should be shifted by

54, since GPIO IDs #0 to #53 are used by MIO pins .

GPIO-EMIO Pins of Zynq-Linux

CENG3430 Lec08: Embedded Operating System 2021-22 T2

Accessing GPIOs as Files (1/2)

• The standard way to control GPIO in Linux is through

the sysfs interface (/sys/class/gpio):

– sysfs is a pseudo file system provided by the Linux kernel

that exports information about various kernel subsystems,

hardware devices, and associated device drivers from the

kernel's device model to user space through virtual files.

16

User Applications (e.g., shell script, c/c++, etc.)

System Call Interface

Virtual File System (VFS)

GNU C Library

TmpFS

/dev

ProcFS

/proc

SysFS

/sys

VolFS

/, /home

DriveFS

/mnt/c

USER

SPACE

KERNEL

SPACE

Hardware (e.g., LED, Switch, Pmods, etc.)

.sh

R
 /
 W

virtual

files

Accessing GPIOs as Files (2/2)

• GPIO (/sys/class/gpio) can be operated by regular

file operations under Linux.

– Export an GPIO (from the kernel space to the user space):

$ echo $id > /sys/class/gpio/export

– Set the direction of an GPIO:

$ echo “in” > /sys/class/gpio/gpio$id/direction

$ echo “out” > /sys/class/gpio/gpio$id/direction

– Read the value of an GPIO:

$ cat /sys/class/gpio/gpio$id/value

– Change the value of an GPIO:

$ echo $var > /sys/class/gpio/gpio$id/value;

– Un-export an GPIO:

$ echo $id > /sys/class/gpio/unexport
CENG3430 Lec08: Embedded Operating System 2021-22 T2 17

Example 1) read_sw.sh

#!/bin/sh # “shebang” is used to mark the start of a script

value=0; # initialize a “non-type” variable named “value” with 0

for i in 0 1 2 3 4 5 6 7; # total 8 switches, GPIO IDs from 69~76

do

sw=$((76-$i)); # i-th GPIO pin corresponding to (7-i)-th LED

sw_tmp=`cat /sys/class/gpio/gpio$sw/value`; # read the “value” of sw

via the GPIO pin by executing the “cat command”

value=$(($value*2)); # multiply the current value by 2

(i.e., left shift the value for 1 bit)

value=$(($value+$sw_tmp)); # add the “value” of sw to the current value

done;

printf "0x%x %d\n" $value $value; # print out the final value in both

hexadecimal & decimal format

CENG3430 Lec08: Embedded Operating System 2021-22 T2 18

Example 2) write_led.sh

#!/bin/sh # “shebang” is used to mark the start of a script

value=$(($1)); # the “second” argument of script (e.g., write_led 0xFF)

if [$value -ge 0];

then

for i in 0 1 2 3 4 5 6 7; # total 8 LEDs, GPIO IDs from 61~68

do

led=$(($i+61)); # i-th GPIO pin corresponding to i-th LED

echo $(($value & 0x01)) > /sys/class/gpio/gpio$led/value;
use bitwise AND operation ('&') to get the right-most bit
and write it to the “value” of the corresponding LED via GPIO

value=$(($value/2)); # divide the value by 2
(i.e., right shift the value for 1 bit)

done;

fi;
CENG3430 Lec08: Embedded Operating System 2021-22 T2 19

Class Exercise 8.1

• Complete the shell script that lights up the 8 LEDs

based on the 8 switches:

CENG3430 Lec08: Embedded Operating System 2021-22 T2 20

Student ID:

Name:

Date:

#!/bin/sh # “shebang” is used to mark the start of a script

for i in 0 1 2 3 4 5 6 7;

do

done;

Example 3) single_digit_counter.sh

CENG3430 Lec08: Embedded Operating System 2021-22 T2 22

#!/bin/sh

display() { # function display

value=$1 # the first argument is the

number to be shown on SSD

echo $2 > /sys/class/gpio/gpio93/value;

the second argument determines which

digit is used (GPIO ID 93 is ssdcat)

for i in 0 1 2 3 4 5 6;

do

pin=$((92-$i)); # JB: 90~92

if [$i -gt 2];

then

pin=$(($pin-4)); # JA:82~85

fi;

echo $(($value&0x01)) >

/sys/class/gpio/gpio$pin/value;

write to the corresponding segment

value=$(($value/2));

done;

}

define seven-segment display patterns,

representing in decimal values

ssd_0=126;

ssd_1=48;

ssd_2=109;

...

ssd_15=71;

count down from 15 to 0 at 1 Hz

for i in $(seq 0 15);

do

num=$((15-$i)); # number to be shown

display $((ssd_$num)) 0;

invoke the display function:

1st argument is the pattern of num,

2nd argument is the ssdcat for

selecting the left/right digit

sleep 1; # delay one sec (1 Hz)

done;

Class Exercise 8.2

• Modify the shell script to make it count from 0 to 15

on the left digit of the Pmod SSD at 2 Hz:

CENG3430 Lec08: Embedded Operating System 2021-22 T2 23

Student ID:

Name:

Date:

#!/bin/sh # “shebang” is used to mark the start of a script

function display

display() { ... }
define seven-segment display patterns, representing in decimal values
ssd_0=126;
ssd_1=48;
ssd_2=109;
...
count from 0 to 15 at 2 Hz
for i in $(seq 0 15);
do
num=$i;
display $((ssd_$num)) 0;
sleep 1;

done;

How to Run .sh Files?

• Give execute permission to your script:

zynq> chmod +x /path/to/yourscript.sh

• Run your script (“.” refers to current directory):

zynq> /path/to/yourscript.sh

zynq> ./yourscript.sh

CENG3430 Lec08: Embedded Operating System 2021-22 T2 25

 Not necessary to have the file extension in Linux

Summary

• Embedded Operating System

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux Device Driver

• Lab 08: Software Stopwatch with Zynq-Linux

– Shell Script

– GPIO on Zynq

– Example Scripts

CENG3430 Lec08: Embedded Operating System 2021-22 T2 26

What else can we do with Zynq-Linux?

• We’ve learnt how to control GPIO-based peripherals.

– How about other peripherals (such as SPI-based Pmod)?

• We’ve learnt how to use the shell script to develop

the application software.

– How about other high-level languages (such as Python)?

CENG3430 Lec08: Embedded Operating System 2021-22 T2 27

